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SUMMARY

It is shown qplt a certain tour of 49
cities, one in each of the 48 states and
washington, D. C., has the shortest road

\
ﬁ\\

distance. [



SOLUTION OF A LARGE SCALE TRAVELING
SALESMAN PROBLEM#

by

G. Dantzig, R. Fulkerson,
and
S. Johnson

l. Introduction. The traveling salesman problem might be deseribed

as follows: Find the shortest route (tour) for a salesman starting

from a given city, visiting each of a specified group of cities, and
then returning to the original point of departure. More generally,

given an n by n symmetric matrix D = (dij)' where diJ represents fho
"distance" from i to J, arrange the points in a cyclic order in such
a way that the sum of the diJ between consecutive points is minimal.
Since there are only a finite number of possibilities (at most

n-1)! to consider, the problem is to devise a method of picking

out the optimal arrangement which is reasonably efficient for

Historical note: The origin of this problem is somewhat
obscure. 1t appears to have been discussed informally among
mathematicians at mathematics meetings for many years. Sur-
prisingly little in the way of results has appeared in the
mathematical litersture [10]. It may be that the minimel
distance tour problem was stimulated by the so—called
Hamiltonian Geme [if which 18 concerned with finding the

number of different tours possible over s specified network.
The latter problem is cited by some as the origin of group
theory and has some connections with the famous Four Color
Conjecture [9]. Merrill Flood (Columbia University) should

be credited with stimulating interest in the traveling salesman
problem in many quarters. As early as 1937, he tried to obtain
near optimal solutions in reference to routing of school buses.
Both Flood and A. W. Tucker (Princeton University) recall that
they heard about the problem first in a seminar talk by Hassler
Whitney at Princeton in 1934 (although Whitney, recently queried,
does not seem to recall the problem). The relations between
the traveling salesman problem and the transportation problem
of linear programming appesr to have been first explored by

M. Flood, J. Robinson, T. C. Koopmans, M. Beclmann, and later
by I. Heller and H. Kuhn [4, 5, 6].
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fairly large values of n. Although algorithms have been devised
for problems of similar nature, e.g., the optimal assignment problem
[3, 7, §), 1ittle is known about the traveling salesman problem.
We do not claim that this note alters the situation very much;
what we shall do is outline a way of approaching the problem that
sometimes, at least, enables one to find an optimal path and préve
it so. In particular, it will be shown that a certain arrangement
of 49 cities, one in each of the 48 states and Washington, D. C.,
is best, the diJ used representing road distances as taken from
an atlas.

In order to try the method on & large problem, the following
set of 49 cities, one in each state and the District of Columbia,

was selected:



1,
2.
3
4,
e
6.
Te
8.

10.
11.
12,
13.
14,
15.
16.
17.
18.
19.
20.
2l.

Manchester, New Hampshire
Montpellier, Vermont
Detroit, Michigan
Cleveland, Ohio
Charleston, West Virginias
Louisville, Kentucky
Indianapolis, Indiana
Chicago, Illinois
Milwaukee, Wisconsin
Minneapolis, Minnesota
Pierre, South Dakota
Bismarck, North Dakota
Helena, Montana

Seattle, Washington
Portland Oregon

Boise, Idaho

Salt Lake City, Utah
Carson City, Nevada

Los Angeles, California
Phoenix, Arizone

Santa Fe, New Mexico

A.
B.
C.
D.
O
F.
a.

22.
23.
24,
25.
26,
27.
8.
29.
30.
31.
32.
33
34,

36.
37,
38,
39.
0.
41,
he,

Baltimore, Maryland
Wilmington, Delaware

Denver, Colorado
Cheyenne, Wyoming
Omaha, Nebrasks

Des Moines, Iowa

Kansas City, Missouri
Topeka, Kansas
Oklahoma City, Oklahoma
Dallas, Texas

Little Rock, Arkansas
Memphis, Tennessee
Jackson, Mississippil
New Orleans, Louisiana
Biraingham, Alabame
Atlanta, Georgia
Jacksonville, Florida
Columbia, South Carolina
Raleigh, North Carolina
Richmond, Virginias
Washington, D. C.
Boston, Massachusetts
Portland, Maine

Philadelphia, Pennsylvania

Newark, New Jersey

New York, New York
Hartford, Connecticut
Providence, Rhode Island
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The reason for picking this particular set was that moat of the
road distances between them were esasy to get from a Rand McNally
atlas. The triangular table of distances between these citles

which follows is part of the orizinal one prepared by Bernice Brown
)

q, -1 ,
of The RAND Corporstion. It gives d,, = 4417 V1, a1, 2, e,

where d, g 18 the road distance in miles between i and J. The d,

have been rounded to the nearest integer. Certainly such a linear
transformation does not alter the ordering of the tour lengths,
although, of course, rounding could csuse a tour that was not
optimal in terms of the originsl mileage to become optimal in
terms of the adjusted units used in this paper.

We will show that the tour (see Figure 16) throuzh the cities
1, 2, ¢¢¢, 42 in this order is minimal for this subset of 42 cities.
Moreover, since in driving from city 40 (wWashington, D. C.) to
city 41 (Boston, Massachusetts) by the shortest road distance one
goes through A, B, -++, O successively, it follows that the tour
through 49 cities 1, 2, -+, 40, A, B, *¢+, G, 41, 42 in that order

is also optimal.

This particular transformation was chosen to make the di

of the original table less than 256 which would permit
compact storage of the distance table in binary representa-
tion; however, no use was made of this.
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2. Preliminary Notions. ﬂ\omvor the rosd from i to J (in

that order)is treveled, the value "1 J = 1 is entered into the
1, J element of a matrix; otherwise "13 - 0 is entered. A (directed)
tour through n cities can now be thought of as a permutation matrix

of order n which represents an n-cycle. For exsmple, forns 5,

the first matrix displayed below

——— p— —

0O 0 O o1 0 0 O
01 0 1 0 0 0 O
1
0o 0 1], l'_'x“j-OOOOI.
1 0 © o 01 0 O
. . ? v o p- ikt ™ f1 e » ‘a. e LT 3] i :‘_ ,To By o&w ,lo-- v:{%“ QOA ‘A‘};:fl%‘_t:
IO DRGSRl AR TN ¢ ) 4 8
X, .Aw .lft u‘ ™ ~, ._,_d‘,,.-ii{';‘.':w J‘-A**A‘dax-\w-l&-\ﬁ-..-c*}-m\\: @ fr; !,\&: Lfﬂ'f‘f " 24 ’:‘f.,‘i
K 2 e " : 5 P t., & i“; ’17.". *11‘\' “:‘. *‘:\: f"."

v e

1s a tour since it represents visiting the cities in the 5-cycle
~(12345), uhilc the other matrix is not a tour since it represents

L7 VABAGIRG the. um- w_- of we m (la) -31”) ST ot

> » X i

- NG 3 ."at " y ‘loh ekl LI «4 ;
i .aﬁ:':f-‘".’”ﬂ, : : - ‘*{1 - ""*’ * |“ﬁl

3 4 AL M -
T e e G R e g .” represents asre s ra

the relations

' ' ' ' '

:xu-qu-l, X, =0 x13_>_0.
b J ' |

The matrix may be made into a triangular array by i'erltcting the

numbers above the disgonal in the dingoml. 'I‘ne sum of corrcs_p

' o wdm -Mbéﬁu i 04 O - ;
elements is denoted by X, y" X, J M ﬁ. Qﬁ ~.

w-trv




.”’-,‘E‘l fes
fhae £

(x,,] - ’ x,4]-

- O O ¥+ -
o + O
O O O N -
o O O

1 [ ]
1 @ -

e 1 = L ot

Consequently, the sum along the kth row plus the sum along the k

column must now be 2. This may be written

(2.0) > x1J+Z 113-2, K =1, ecoe, N, x“?_o.
J<is=sk 1>J=k

b e S el e

This dovico yioldn a mpnunutm tor &mm tm u‘ 10 the
one used throughout this paper. It will te noted that the second

array above does not represent a tour hut also satisfies the

relations (2.0).
ror uniircotod tours, cho unbol ‘1 3 will be trested ucnu“ny o

with X 44 so that we may rewrite (2.0) as

n
(2.1) Z xij‘e’ xijzo (1.1’ 2’ .... n. 1{3’ xiJExJi) L4
J=1

The problem is to find the minimum of the linear form

&
2.2) D(x) = 3 4
( * ga t3 ¥

where the xi‘1 = 0 or 1 and the xi‘1 =1 form a tour, and where the
sunmmation in (2.2) extends over all indices (1,3) such that ¢ > J.
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To make 8 linear programming problem out of this (aee [é])
one needs, as we have observed, a way to describe tours by more
linear restraints thari that given by (2.1). Th!s 1s extremely
difficult to do as illustrated by work of I. Heller [4] and
H. Kuhn [6]. They point out that such relations always exist.
However, there seems to be no simple way to characterize them
and for moderate size n the number of such restraints appears to
be astronomical. In spite of these difficulties, this paper will
describe the techniques we have developed which have been success-
ful in solving all the problems we have tried by this approach. |
A surprising empirical observation 1s the use of only a trivial
number of the many possible restraints to solve any particular
problem. To demonstrate the procedure, we shall attempt to use
direct elementary proofs even though they were originslly motivated
in many places by linear programming procedures.

There are possibly four devices we have used which have greatly
reduced the effort in obtaining solutions of the problems we have
attempted.

First of all, we use undirected tours. This seems to simplify
the characterization of the tours when n is small and certainly
cuts down the amount of computation, even for large n. Secondly,
and this is decisive, we do not try to characterize the tours by
the complete set of linear restraints, but rather impose, in addi-
tion to (2.1), Just enough linear conditions on the X4y to assure

that the minimum of the linear form (2.2) is assumed by some tour.



For the 49-city problem and also for all the smaller problems we
have considered, such a procedure hss been relatively easy to carry
through by hand computation. This may be due in part to the fact
that we use 8 simple symbolism which permits direct representation
of the algebraic relationships and manipulations on a map of the
cities. This third device speeds up the entire iterative process,
makes it easy to follow, and sometimes suggests new linear restraints
that are not likely to be obtained by less visual methods. Flnally,
once a tour has been obtained which is nearly optimal, a combinatorial
approach, using the map and listing possible tours which have not

yet bezn eliminated by the conditions imposed on the problem, may

be advantageous. This list can be very much shorter than one would
expect, due to the complex interlocking of the re-"raints. However,
except for short discussion in section 4, this method will not be
described \n detall although it has worked out well for all examples
we have studied.

An important class of conditions that tours satisfy, which
excludes many non—tour cases satisfying (2.1), are the "loop
conditions." These are linear inequality restraints that exclude
subcycles or loops. Consider a non-tour solution to (2.1) which
has a subtour of n, < n cities; we note that the sum of the
xij for those links (1, J) in the subtour is n, . Hence we can
eliminate this type of solution_by imposing the condition that
the sum of X, 4y over all 1inks (i1, J) connecting cities in the

subset 3 of n, clties be less than n, , l.e.,



P-510

(2.3) S x,,<n =1
T

where the summation extends over all (i, J) with i and J in the

n, cities 3. From (2.1) we note that two other equlvelent condl-

tions are

(2.4) 2 Xg<n=n -1,
S

where T means the summation extends over all (i, J) such that

neither L nor J 1s in S, and

(2.9) injzz p

where ST means the summation extends over all (i, J) such that 1
is in S and J not 1in S.

There are, however, other more complicated types of restralnts
which sometimes must be added to (2.1) in addition to an assortment
of loop conditions in order to exclude solutions involving frac-
tional weights Xy 4 In the 49—city case we needed two such condl-
tions. lowever, later when we tried the combinatorial approacn
after imposing only a few of the loop condltions, we found we
could handle the 49—city problem without the use of tne speclal
restraints and this would have led to a shorter proof of optimality.
It 1s conjectured that one can use the combinatorial arguments
tozether with loop conditions to solve any traveling salesman

problem of moderate size in a reasonable time.
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3, The Method. The technlque will be illustrated by a series of

simple examples.

Example 1

First consider a five—city map forming & regular pentagon
of unit length per side and with length % (NS +1) =1.7Ton a

diagonal.

4

Suppose that the problem is to minimize (2.2) subject only

to (2.1). Start with a tour which 18 conjectured to be

optimal, obviously (1234 5). In this case the values of X, 49

ted by X X X X X = x.. =1 and all other
denote y le’ are X410 = x2} = x,u - 145 x51

A
X,
called "basic variables." The length of the tour given by the

= 0. The varilables le corresponding to links on the tour are

linear form (2.2) for x = X 18 D(X) = 5. There are five equations

in (2.1). Multiply each by a parameter ¥, to be determined, and

v

then subtract the sum from (2.2). Thus, we are led to
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n n
D(x) = 1>EJ dy Xy 4 —gxri(zlx“-e) [xy ) = x50 1 A4 J]

n
=N (w, + 7, =d, Jx,, + 2 T, .

;;5 1 J 1J°71) 2; 1

Denote the coefficlents of X3 by 613 so that

n
(3.1) D(x) --?;Jo“x“»fe;ri ; (61J-11+1J—du).

Now determine the five ¥, values so that °1J corresponding to

basic variables vanish:
[N
(3.2) 513 =0 for Xy = 1,

i.e., 1f the link (1,J) is on the tour in question. Note that

to solve for the v, we have five linear equations in five unknowns.

If nov vo set Xy ® iij in (3.1), then %3513 -0 F

A n
(3.3) D(x) =2 )1__ T, =5,
Subtracting (3.3) from (3.1) we have finally

(3.4) B(x) - D(x) = - L, b1y

For the regular pentagon v, = é for 1 =1, 2, 3, 4, 5 solves (3.2),
and so 6“ -%— (1 =4/5) < 0 on a diagonal, 1.e., 61'j < O for every

(1,J). Thus, the right side of (3.4) 1s always nonnegative
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or D(x) > p(x) for all x satisfying (2.1), and 1n particular
all other tours are longer than the tcw* represented by x.

Example 2

Next, take another five—city problem whose map is not a

regular pentagon:

We start with the tour (12345) of length D(X) = 32 where
A A A
the basic variables take on the values X0 = 23 = ?)h = XMS
= 251 = 1 and all other QiJ = 0. Repeat the sted% in the pre-—
vious problem leading to (3.4) where, as before, calculate the
Ty by setting 513 = O for 61J corresponding to bnsic variables

xiJ‘ The five equations that the Ty must satisfy are

T+ Wy, =5, T, + Ty = 5, Ty + My = 8, LI e = 6,

Te + Ty = 8

" By aliernately subtracting and adding these equations one obtairs

»a

or, = d12-d2}+d}u-du5+d51 «=5-5+8-6+8 =10,

or
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T, =5 ®,=0, Ty= 5, my =3, Tg = 3

The factors v, which multiply equations (2.1) to form (3.4)
are called "pot?ntiale."’ There is one such potential assocla-
ted with each city i, and these are readily computed by working
éirectly on the map of the cities (see Pig. 3).

To form other 613, add the w4y and Ty of city { and city J
and subtract off the distance diJ between them. In this case
we note that excepi for 08y, = 5 ¢ 5—6 = {4, all the other

0 afo‘s 0.

1
" We see from (3.4) that 1f Xyq Were to take on a positive
value, x}1 = &, the other nonbasic variables remaining at zero,
this may ledd to a better solution. We let © be the largest
value consistent with (2.1). Thus, the weights X494 must add up
to 2 on links from each city and no weight is negatlive. How-
ever, in setting x}l = 6 we adjust only the basic set of vari-

ables, leaving all other nonbasic variables at zero value. This

18 worked out on the map below (Fig. 4).

~q

: 2
The term potential 1s used by T. C. Koopm&a sﬂin an analogous
connection for the transportation problem ?SJ
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Here the maximum value of © is 1, and this leads to a 3-cycle

(1 2 3) and a 2-cycle (4 5) (Fig. 5).

This is not a tour, so we add a loop cond'tion which excludes

tnis solution but which 1s satisfied by all tours. In this

case xu5 < 1 or

(3.5) x45+y6_l = 0 y6_>_0a

1s such a condition. Accordingly, we start over again using the
five equations (2.1) and the sixth equation (3.5). This time
we will need 8ix hasic variables and it will be convenlent
tc rave X, (the one we set equal to © previously) included with
those associated with the tour. Thus, the starting solution is

A A A "
as follows: The basic varilables have values X1 = 12} - x3“ = xas

la)
= X, =1, X = 0, All other & = 0. This solution is shown
o1 1> 1)

in Fig. 6. The presence of an upper bound on Xy5 or relation

(3.5) 1s depicted in Fig. 6 by a block symbol on (4,5).
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Now we multiply equation (3.5) by Vg add it to Y . 31- -2 Jwoun
R A

subtract the sum from z dy 4%y 4 and collect terms in x,, a8 AL

before. The result is

(3.6) ;: a, X --gb x,+2ii‘1+1r6(1—y6)
ST 1571 a

Now determine the six values of my by setting 613 = 0

corresponding to basic variables xuz

from which it follows that

(3.8) D(x) —D(Q) - — Z wa“ - TeYg

-l - 3 LI * .

To ovaiuate ¥, we note that there are six equations in six

unknowns. These are shown on the map below (Fig. 7). The three
conditions about the triangular loop (1,2,3) permits us t-> solve

for LYY, Ty Branching out from the triang)?e we get next

LA and LY and finally LI Thus, we determine first that 211
n612—623+d31-5-5+630that1rl =3, T, =2, r}-B.
Working down, r, = 5, Te = 5. Thus, m, + Ty = - W + 6, so Tg = - 4,

These values are shown adjacent to each city in Fig. 7.
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relation (3.2) implies that the w, satisfy the relations shown
in Fig. 8. In this case (and this is generally true for loops
with an even number of links) the sum of equations on links
(1,2), (3,4%), (5,6) 1s identical with the sum for (2,3), (4,5),
(6,7) except for different constant terms, so that the system
of equations in 71 is 1lnconsistent.

This difficulty can be avoided if the foll-owing general rule
is followed: The set of basic variables must be so selected
that wher. the remaining xiJ are fixed, the values of the baslic
variables are uniquely determined. This means the matrix of
coefficients of the basic variables is nonsingular (i.e., their
Aeterminant 1s nonvanishing). Since the 7, satisfy a system of
equations whose coefficient matrix 1s the transpose of this
matrix, the w, will be uniquely determined also. In the 6—city
case, one may augment system (2.1) with the additional upper-

bound condition

(3.9) xus + Yy " 1 tr’-, 2 0)

and select x;3 as a basic variable in additlon to the basic
variables X, 4 corresponding to (1,J) on the tour. Then, letting
T, be the welght assoclated with restriction (3.9), the m, sat—
isfy relations in Fig. G.



The value of m = 5/2 can be determine? from the odd loop

(1 2 3) by altenately adding and subtracting the equations around
the loop. The others can then be evaluated immedlately. In

this case, we have analogous to (3.8)

(3.10) D(x) — D(k) = =3 64 4%y g = T7¥7

where 61J -‘O if X493 is a basic varladble and 513 -y + Ty "Jij‘
otherwise. Since 6, = 3, increasing the value of x,c to @ (while
all other nonbasic variables remain zero), with corresponding

ad justments in the basic variables, will yleld D(x) — D(X) = - 36 < O.
In Fig. 10 it is seen that the largest value of 6 = 1 and the
resulting solution 1s Fig. 11, which 1s not =2 néw tour, but two

loops. iiowever, we can exclude this solution by imposing the

additional restriction catisfied by all tour solutlons
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(3.11) Xyp + Xpz + X3 < 2, OF X35 + Xpg + X5y + ¥g = 2, (yB > 0)

since in Fig. 11 the inadmissible solution has X,, + X553 + X3 = 3.
We now start all over again augmenting relatlions (2.1) by (3.9)
and (3.11). Let the basic varisbles be the same as before but
include x,¢ (1.e., the one we set equal to © in Fig. 10). Let

rbr 1, 2, ***, 3 be the welghts assigned to these relations

T
1
respectively in forming D(x) - D(x); then the T, satisfyinz the

relations shown in Fig. 12

where the loop condition (3.11) is symvolized by the dotted loop

in the figure.
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The value of Tg = 2 may be evaluated from the odd loo0p
(6 4 3 2 1) by alternately adding and subtracting the
equations in L shown on this loop. The other T, can then be

immediately determined. This time

4

(3.11) D(x) - D(x) = -3 81J gg = Tq¥7 = TeYg

where Sij = 0 for X, 8 basic variable and Sij =Ty 4Ty - diJ
otnerwise. Since only &, =1 while all other Slj < 0, we

set Xop = ®; then the adJjustments in the values of the basic
variables necessary to satisfy (2.1), (3.9), (3.11) are shown

in Fig. 13 and the new solution for 6 = 1 13 a new tour Q with
length D(f) = D(X) -1 = 22, Flg. 14. We may now drop Xg) = 0
from the basic set of variables (or alternmatively xle) and replace
1t by x5, 8s a8 new basic variable. Thils yields the relations for
m, of Fig. 15. The expression for D(x) - D(x) is similar to
(3.11). It can now be tested that all SiJ < O corresponding to

non—opasic xiJ’ and the coefficients of y7 and yg are L < 0,

Tg < 0, so that the new tour 1s established as optimal.



4. An Estimation Procedure. In any linear programming problem

witlh bounded variables, an estimate is available of row much a
vasic solution differs from an optimal solution. Let D(x)
represent a linear form to be minimized and D(f) be the value
for some basic solution X where variables (xl, Xos % xn,),
represented by the symbol x,satisfy a system of equations as
well as bounds O < xJ S_rj. If the equations are multiplied by

weights 7, and subtracted from D(x), then (as we have noted earlier)

i
A n'
(4.1) D(x) — D(x) = —-;;1 SJxJ (xJ > 0)

where 7, are chosen such that Sﬁ = 0 If the corresponding Xy is a
basic variable. We may now split the right side of (4.1) into

positive and negative parts and obtain a lower bound for the

difference by dropping the posltive part, l.e.
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(4.2)  D(x) — D(x) = —6J§O 6 4%, _6J§0 Byxy (x4 > 0)
(4.3)  D(x) - D(x) > - 6%, > = E (E > 0)
6,50

where —£ is some estimate for the negative part. By setting
X, = rJ, we obtain in particular

J

(5.4)  D(x) - D(x) > - 5.
- = J J
%

For the traveling salesman problem the variatles X4 must
e aitler O or 1 If x represents a tour. From (4.2), no link

(1,j) can occur in an optinal tour 1f

(4.5) oy, <= E
rence all corresponding variables xij can be dropped from further
consideration.

During the early stages of the computation, E may ve quite
largze and very few links can oe dropped by this rule; however,
1;, the latter stages often 8o many 1l1nxs are eliminated that one
san 1list all poaslile tours that use the remaining admissible

linls, v extending this type of combinatorial argument to the
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range of values of the "slack" variables y, , it 1s often possible
at an earlier stage of the iterative algorithm to rule out so
many of the tours that direct examination of the remailning tours

for minimum length is a feasible approach.

5. The 49-City Problem.*® The optimal tour X 1s shown in Fig. 16.

The proof that it 1is optimal 1s given in Fig. 17. To make the
correspondence between the latter and 1ts programming problem
clear, we will write down in addition to 42 relations in non—
negative variables (2.1), a set of 25 relations which suffice
to prove that D(x) is a minimum for X. We distinguish the fol-
lowing subseéa of the 42 citles:

- {1, 2, 1, 42}

S, = {3, 4 .-vs 9}

5= {1, 2, ..., 9, 29, 30, ..., 42}

S, =<11, 12, ..., 23}

S, = {13, 14, ..., 23]

S¢ = {13, 14, 15, 16, 17}

S, = {24, 25, 26, 27 .

Except for two inequalities which we will discuss in a moment,

the programming problem may now be written as:

*As indicated earlier, it was possible to treat this as
a 42—city problem.



- o

§ Xy =2 (1=1,...,42), X0 £ x5 <1, X7 6 S 1
9,6 S 1y X1p 118 X938 X514 S Xp0,09 S 1,
*23,22 S 1r X504 10 Xpp 26 S 1y Xpg o3 1, Xy

*33,32 S 10 X3g 3 S 1, Xyp 36 <1, s}gl"ia 22,% 2 x5 22,

IA
W

Z_xUZ?, z-"u?.?' X442 2, qu_gl&, qu
5333 S5y S5%‘5 S S,

The remaining two relations 66 and 67 are perhaps most easily
described verbally. The first says that x1~.15 minus the sum

of all other Xy 4 On links out of lfj, 16, 19, except for X)8,15°
x18,16’ x17’16, x19'18, and x2o'19, which do not appear in the sum,
is not positive; the second that Zhinij‘S 42, where a23’22 - 2,
'26,25 = 0, all other aiJ-l except aij-o ir Xy i3 a non-basic
variable and either (a) { 1s in S5, J not in 8y or (b) £ or J 1s
10, 21, 25, 26, 27, or 28.%e

e — )

-~

'SZ§x1J means the sum of all variables where only one of the
subscéipts i or Jis in 8. Eﬁij means the sum of all variables
. S
such that 1 and J are in S—see relations (2.3), (2.4), (2.5).

**We are indebted to I. Glicksberg of RAND for pointing out
relations of this kind to us.



These two inequalities are satisfied by all tours. PFor example,
if a tour were to violate the first one, it must have successively
xls,lh.l’ x18,15'1' x18,16'1' but also x19’18-1, a contradiction.
The argument that each tour satisfies the second inequality is
similar but somewhat more involved, and we omit it. These re-—
lations were imposed to cut out fractional solutions which
satisfied all the conditions (2.1) and (2.3).

We assert that 1f the weights T, are assigned to these
restraints in the order presented above, then the values as glven
in Fig. 17 satisfy 615'0 for all variables x1J in the basis.

With these values of 7, in the expression for D(x) - D(x), a1l
615‘5 O corresponding to variables x1J and 7#3"4&”"’767
corresponding to variables yh}”"”67 are appropriately positive
or negative (positive if its y occurs with a minus sign in the

relation, negative otherwise) with the exception of Teo --%

e

) 1
where x25,2b + y52 1. This proves, since E s = and all the
are integers, that % 1s minimal. The length D(x) 1s 699

diJ
units, or 12,345 miles except for rounding errors.

It can be shown by introducing all links for which bi,j?-%
that x 1s the unique minimum. There are only 7 such links 1n
addition to those shown in Pig. 17, and consequently all possible

tying tours were enumerated without too much trouble. None of

them proved to be as good as ﬁ .
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4

0, Concluding remark. It is clear that we have left unanswered

practically any question one might pose of a theoretical nature
concerming the traveling salesman problen; !owever, we hope that
the feas’bllity ol attacking problems involving a moderate number
of points lLias Leen successfully demonstrated, and that perhaps

sone of the ldeas can be used in problems of similar nature.
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